HUMAN ENPP1 ELISA **Product Data Sheet** Cat. No.: RD191124200R For Research Use Only Page 1 of 24 ENG.001.A ## **CONTENTS** | 1. | INTENDED USE | 3 | |-----|--|----| | 2. | STORAGE, EXPIRATION | 3 | | 3. | INTRODUCTION | 4 | | 4. | TEST PRINCIPLE | 5 | | 5. | PRECAUTIONS | 5 | | 6. | TECHNICAL HINTS | 5 | | 7. | REAGENT SUPPLIED | 6 | | 8. | MATERIAL REQUIRED BUT NOT SUPPLIED | 6 | | 9. | PREPARATION OF REAGENTS | 7 | | 10. | PREPARATION OF SAMPLES | 9 | | 11. | ASSAY PROCEDURE | 10 | | 12. | CALCULATIONS | 12 | | 13. | PERFORMANCE CHARACTERISTICS | 13 | | 14. | DEFINITION OF THE STANDARD | 16 | | 15. | PRELIMINARY POPULATION AND CLINICAL DATA | 16 | | 16. | METHOD COMPARISON | 17 | | 17. | TROUBLESHOOTING AND FAQS | 18 | | 18. | REFERENCES | 19 | | 19. | EXPLANATION OF SYMBOLS | 20 | - This kit is manufactured by: Bio Vendor Research and Diagnostic Products, s.r.o. - Use only the current version of Product Data Sheet enclosed with the kit! Page 2 of 24 ENG.001.A #### 1. INTENDED USE The RD191124200R Human ENPP1 ELISA is a sandwich enzyme immunoassay for the quantitative measurement of human ENPP1. #### **Features** - It is intended for research use only - The total assay time is less than 3.5 hours - The kit measures ENPP1 in serum and plasma (citrate) - Assay format is 96 wells - Standard is recombinant protein based - Components of the kit are provided ready to use, concentrated or lyophilized #### 2. STORAGE, EXPIRATION Store the complete kit at 2-8°C. Under these conditions, the kit is stable until the expiration date (see label on the box). For stability of opened reagents see Chapter 9. Page 3 of 24 ENG.001.A #### 3. INTRODUCTION pyrophosphatase/phosphodiesterase 1 (ENPP1, PC-1) is a class **Ectonucleotide** transmembrane glycoprotein that is located both on the plasma membrane and in the Human ENPP1 endoplasmatic reticulum [6]. belongs to the ectonucleotide proteins pyrophosphatase/phosphodiesterase (ENPP) family of which hydrolyze pyrophosphate or phosphodiester bonds in various extracellular compounds, such as nucleotides and lysophospholipids [5,6]. These proteins consist of a short terminal NH₂ intracellular domain, a single transmembrane domain, two somatomedin-B-like domains and COOH-terminal nuclease-like domain [8]. ENPP1 is a 230-260 kDa homodimer, and its reduced form has a molecular size of 115-135 kDa depending on the cell type [11]. Human ENPP1 has 873 amino acids and its gene is located on the long arm of chromosome 6 (6q23.2). ENPP1 is expressed in various tissues including liver, skeletal muscle and adipose tissue. It is also expressed in heart, brain, kidney, placenta, pancreatic islets, kidney, lung, chondrocytes, lymphocytes, and dermal fibroblasts [11]. The physiological function of ENPP1 is not completely understood. There is evidence that ENPP1 plays a major role in bone and cartilage metabolism by producing pyrophosphate [9]. The latter substance inhibits bone formation. In ENPP1 knockout mice and in humans lacking ENPP1 there is ectopic calcification in the spine, aorta, and other tissues with markedly decreased survival [7]. ENPP1 seems to play a role in glucose metabolism impairment *in vivo*. Insulin resistant rodents and humans show high levels of expression of this protein [3]. Several studies reported that mutations in the ENPP1 gene are associated with idiopathic infantile arterial calcification, ossification of the posterior longitudinal ligament of the spine (OPLL) and insulin resistance. Areas of investigation: Bone and cartilage metabolism Diabetology Energy metabolism and body weight regulation Page 4 of 24 ENG.001.A #### 4. TEST PRINCIPLE In the BioVendor Human ENPP1 ELISA, standards and samples are incubated in microplate wells pre-coated with polyclonal anti-human ENPP1 antibody. After 60 minutes incubation and washing, biotin labelled polyclonal anti-human ENPP1 antibody is added and incubated for 60 minutes with captured ENPP1. After another washing, streptavidin-HRP conjugate is added. After 30 minutes incubation and the last washing step, the remaining conjugate is allowed to react with the substrate solution (TMB). The reaction is stopped by addition of acidic solution and absorbance of the resulting yellow product is measured. The absorbance is proportional to the concentration of ENPP1. A standard curve is constructed by plotting absorbance values against concentrations of standards, and concentrations of unknown samples are determined using this standard curve. #### 5. PRECAUTIONS - For professional use only - Wear gloves and laboratory coats when handling immunodiagnostic materials - Do not drink, eat or smoke in the areas where immunodiagnostic materials are being handled - Avoid contact with the acidic Stop Solution and Substrate Solution, which contains hydrogen peroxide and tetramethylbenzidine (TMB). Wear gloves and eye and clothing protection when handling these reagents. Stop and/or Substrate Solutions may cause skin/eyes irritation. In case of contact with the Stop Solution and the Substrate Solution wash skin/eyes thoroughly with water and seek medical attention, when necessary - The materials must not be pipetted by mouth #### 6. TECHNICAL HINTS - Reagents with different lot numbers should not be mixed - Use thoroughly clean glassware - Use deionized (distilled) water, stored in clean containers - Avoid any contamination among samples and reagents. For this purpose, disposable tips should be used for each sample and reagent - Substrate Solution should remain colourless until added to the plate. Keep Substrate Solution protected from light - Stop Solution should remain colourless until added to the plate. The colour developed in the wells will turn from blue to yellow immediately after the addition of the Stop Solution. Page 5 of 24 ENG.001.A Wells that are green in colour indicate that the Stop Solution has not mixed thoroughly with the Substrate Solution • Dispose of consumable materials and unused contents in accordance with applicable national regulatory requirements #### 7. REAGENT SUPPLIED | Kit Components | State | Quantity | |--|--------------|----------| | Antibody Coated Microtiter Strips | ready to use | 96 wells | | Biotin Labelled Antibody Conc. (100x) | concentrated | 0.15 ml | | Streptavidin-HRP Conjugate | ready to use | 13 ml | | Master Standard | lyophilized | 2 vials | | Dilution Buffer | ready to use | 20 ml | | Biotin-Ab Diluent | ready to use | 13 ml | | Wash Solution Conc. (10x) | concentrated | 100 ml | | Substrate Solution | ready to use | 13 ml | | Stop Solution | ready to use | 13 ml | | Product Data Sheet + Certificate of Analysis | - | 1 pc | #### 8. MATERIAL REQUIRED BUT NOT SUPPLIED - Deionized (distilled) water - Test tubes for diluting samples - Glassware (graduated cylinder and bottle) for Wash Solution (Dilution Buffer) - Precision pipettes to deliver 5-1000 μl with disposable tips - Multichannel pipette to deliver 100 µl with disposable tips - Absorbent material (e.g. paper towels) for blotting the microtitrate plate after washing - Vortex mixer - Orbital microplate shaker capable of approximately 300 rpm - Microplate washer (optional). [Manual washing is possible but not preferable.] - Microplate reader with 450 ± 10 nm filter, preferably with reference wavelength 630 nm (alternatively another one from the interval 550-650 nm) - Software package facilitating data generation and analysis (optional) Page 6 of 24 ENG.001.A #### 9. PREPARATION OF REAGENTS - All reagents need to be brought to room temperature prior to use - Always prepare only the appropriate quantity of reagents for your test - Do not use components after the expiration date marked on their label - Assay reagents supplied ready to use: #### **Antibody Coated Microtiter Strips** Stability and storage: Return the unused strips to the provided aluminium zip-sealed bag with desicant and seal carefully. Remaining Microtiter Strips are stable 3 months stored at 2-8°C and protected from the moisture. Streptavidin-HRP Conjugate **Dilution Buffer** **Biotin-Ab Diluent** **Substrate Solution** **Stop Solution** Stability and storage: Opened reagents are stable 3 months when stored at 2-8°C. • Assay reagents supplied concentrated or lyophilized: #### **Human ENPP1 Master Standard** Refer to the Certificate of Analysis for current volume of Dilution Buffer needed for reconstitution of standard!!! Reconstitute the lyophilized Master Standard with Dilution Buffer just prior to the assay. Let it dissolve at least 15 minutes with occasional gentle shaking (not to foam). The resulting concentration of the human ENPP1 in the stock solution is **16 ng/ml**. Prepare set of standards using Dilution Buffer as follows: | Volume of Standard | Dilution Buffer | Concentration | | | |---------------------|-----------------|---------------|--|--| | Stock | - | 16 ng/ml | | | | 250 μl of stock | 250 μΙ | 8 ng/ml | | | | 250 μl of 8 ng/ml | 250 μΙ | 4 ng/ml | | | | 250 μl of 4 ng/ml | 250 μΙ | 2 ng/ml | | | | 250 μl of 2 ng/ml | 250 μΙ | 1 ng/ml | | | | 250 μl of 1 ng/ml | 250 μΙ | 0.5 ng/ml | | | | 250 μl of 0.5 ng/ml | 250 μΙ | 0.25 ng/ml | | | Prepared Standards are ready to use, do not dilute them. Page 7 of 24 ENG.001.A #### Stability and storage: Do not store the diluted Standard solutions. #### **Biotin Labelled Antibody Conc. (100x)** Prepare the working Biotin Labelled Antibody solution by adding 1 part Biotin Labelled Antibody Concentrate (100x) with 99 parts Biotin-Ab Diluent. Example: 10 μ l of Biotin Labelled Antibody Concentrate (100x) + 990 μ l of Biotin-Ab Diluent for 1 strip (8 wells). Stability and storage: Do not store the diluted Biotin Labelled Antibody solution. #### Wash Solution Conc. (10x) Dilute Wash Solution Concentrate (10x) ten-fold in distilled water to prepare a 1x working solution. Example: 100 ml of Wash Solution Concentrate (10x) + 900 ml of distilled water for use of all 96-wells. #### Stability and storage: The diluted Wash Solution is stable 1 month when stored at 2-8°C. Opened Wash Solution Concentrate (10x) is stable 3 months when stored at 2-8°C. Page 8 of 24 ENG.001.A #### 10. PREPARATION OF SAMPLES The kit measures ENPP1 in serum and plasma (citrate). Samples should be assayed immediately after collection or should be stored at -20°C. Mix thoroughly thawed samples just prior to the assay and avoid repeated freeze/thaw cycles, which may cause erroneous results. Avoid using hemolyzed or lipemic samples. #### Serum samples: Dilute samples 10x with Dilution Buffer just prior to the assay, e.g. 15 μ l of sample + 135 μ l of Dilution Buffer for singlets, or preferably 25 μ l of sample + 225 μ l of Dilution Buffer for duplicates. **Mix well** (not to foam). Vortex is recommended. #### Stability and storage: Samples should be stored at -20°, or preferably at -70°C for long-term storage. Avoid repeated freeze/ thaw cycles. Do not store the diluted samples. Note: It is recommended to use a precision pipette and a careful technique to perform the dilution in order to get precise results. Page 9 of 24 ENG.001.A #### 11. ASSAY PROCEDURE - 1. Pipet **100** μ**I** of diluted Standards, Dilution Buffer (=Blank) and samples, preferably in duplicates, into the appropriate wells. See *Figure 1* for example of work sheet. - 2. Incubate the plate at room temperature (ca. 25°C) for **1 hour**, shaking at ca. 300 rpm on an orbital microplate shaker. - 3. Wash the wells 3-times with Wash Solution (0.35 ml per well). After final wash, invert and tap the plate strongly against paper towel. - 4. Add **100** μ**I** of Biotin Labelled Antibody into each well. - 5. Incubate the plate at room temperature (ca. 25°C) for **1 hour**, shaking at ca. 300 rpm on an orbital microplate shaker. - 6. Wash the wells 3-times with Wash Solution (0.35 ml per well). After final wash, invert and tap the plate strongly against paper towel. - 7. Add **100** µl of Streptavidin-HRP Conjugate into each well. - 8. Incubate the plate at room temperature (ca. 25°C) for **30 minutes**, shaking at ca. 300 rpm on an orbital microplate shaker. - 9. Wash the wells 3-times with Wash Solution (0.35 ml per well). After final wash, invert and tap the plate strongly against paper towel. - 10. Add 100 μ I of Substrate Solution into each well. Avoid exposing the microtiter plate to direct sunlight. Covering the plate with e.g. aluminium foil is recommended. - 11. Incubate the plate for **10 minutes** at room temperature. The incubation time may be extended [up to 20 minutes] if the reaction temperature is below than 20°C. Do not shake the plate during the incubation. - 12. Stop the colour development by adding 100 μ I of Stop Solution. - 13. Determine the absorbance of each well using a microplate reader set to 450 nm, preferably with the reference wavelength set to 630 nm (acceptable range: 550-650 nm). Subtract readings at 630 nm (550-650 nm) from the readings at 450 nm. The absorbance should be read within 5 minutes following step 12. Note: If the microplate reader is not capable of reading absorbance greater than the absorbance of the highest standard, perform a second reading at 405 nm. A new standard curve, constructed using the values measured at 405 nm, is used to determine ENPP1 concentration of off-scale samples. The readings at 405 nm should not replace the on-scale readings at 450 nm. Note 2: Manual washing: Aspirate wells and pipet 0.35 ml Wash Solution into each well. Aspirate wells and repeat twice. After final wash, invert and tap the plate strongly against paper towel. Make certain that Wash Solution has been removed entirely. Page 10 of 24 ENG.001.A | , — — — — — — — — — — — — — — — — — — — | strip 1+2 | strip 3+4 | strip 5+6 | strip 7+8 | strip 9+10 | strip 11+12 | |---|---------------|-----------|-----------|-----------|------------|-------------| | Α | Standard 16 | Sample 1 | Sample 9 | Sample 17 | Sample 25 | Sample 33 | | В | Standard 8 | Sample 2 | Sample 10 | Sample 18 | Sample 26 | Sample 34 | | С | Standard 4 | Sample 3 | Sample 11 | Sample 19 | Sample 27 | Sample 35 | | D | Standard 2 | Sample 4 | Sample 12 | Sample 20 | Sample 28 | Sample 36 | | Е | Standard 1 | Sample 5 | Sample 13 | Sample 21 | Sample 29 | Sample 37 | | F | Standard 0.5 | Sample 6 | Sample 14 | Sample 22 | Sample 30 | Sample 38 | | G | Standard 0.25 | Sample 7 | Sample 15 | Sample 23 | Sample 31 | Sample 39 | | Н | Blank | Sample 8 | Sample 16 | Sample 24 | Sample 32 | Sample 40 | Figure 1: Example of a work sheet. Page 11 of 24 ENG.001.A Most microplate readers perform automatic calculations of analyte concentration. The Standard curve is constructed by plotting the mean absorbance (Y) of Standards against log of the known concentration (X) of Standards, using the four-parameter algorithm. Results are reported as concentration of ENPP1 ng/ml in samples. Alternatively, the logit log function can be used to linearize the standard curve (i.e. logit of the mean absorbance (Y) is plotted against log of the known concentration (X) of Standards. The measured concentration of samples calculated from the standard curve must be multiplied by their respective dilution factor, because samples have been diluted prior to the assay. e.g. 1.25 ng/ml (from standard curve) x 10 (dilution factor) = 12.5 ng/ml Figure 2: Typical Standard Curve for Human ENPP1 ELISA. Page 12 of 24 ENG.001.A #### 13. PERFORMANCE CHARACTERISTICS # Typical analytical data of BioVendor Human ENPP1 ELISA are presented in this chapter #### Sensitivity Limit of Detection (LOD) (defined as concentration of analyte giving absorbance higher than mean absorbance of blank* plus three standard deviations of the absorbance of blank: $A_{blank} + 3xSD_{blank}$) is calculated from the real ENPP1 values in wells and is 0.13 ng/ml. #### Limit of assay Samples with absorbances exceeding the absorbance of the highest standard should be measured again with higher dilution. The final concentration of samples calculated from the standard curve must be multiplied by the respective dilution factor. ## Presented results are multiplied by respective dilution factor #### Precision Intra-assay (Within-Run) (n=8) | Sample | Mean
(ng/ml) | SD
(ng/ml) | CV
(%) | | |--------|-----------------|---------------|-----------|--| | 1 | 1 23.99 | | 1.3 | | | 2 | 2 23.67 | | 2.5 | | Inter-assay (Run-to-Run) (n=6) | Sample | Mean | SD | CV | | | |--------|---------|---------|-----|--|--| | | (ng/ml) | (ng/ml) | (%) | | | | 1 | 21.45 | 0.96 | 4.5 | | | | 2 | 2 13.40 | | 6.2 | | | Page 13 of 24 ENG.001.A ^{*}Dilution Buffer is pipetted into blank wells. ## Spiking Recovery Serum samples were spiked with different amounts of human ENPP1 and assayed. | Sample | O bserved | E xpected | Recovery O/E | | |--------|------------------|------------------|---------------------|--| | | (ng/ml) | (ng/ml) | (%) | | | | 16.32 | - | - | | | 1 | 51.46 | 56.32 | 91.4 | | | I | 33.24 | 36.32 | 91.5 | | | | 24.24 | 26.32 | 92.0 | | | | 16.62 | - | - | | | 0 | 54.44 | 56.62 | 96.1 | | | 2 | 36.04 | 36.62 | 98.4 | | | | 28.50 | 26.62 | 107.1 | | ## Linearity Serum samples were serially diluted with Dilution Buffer and assayed. | Sample | Dilution | O bserved | E xpected | Recovery | |--------|----------|------------------|------------------|----------------| | | | (ng/ml) | (ng/ml) | O/E (%) | | | - | 28.80 | - | - | | 4 | 2x | 14.81 | 14.40 | 107.5 | | 1 | 4x | 7.49 | 7.20 | 108.3 | | | 8x | 3.63 | 3.60 | 108.7 | | | - | 26.10 | - | - | | | 2x | 14.03 | 13.05 | 104.2 | | 2 | 4x | 7.07 | 6.53 | 108.4 | | | 8x | 3.55 | 3.26 | 90.3 | Page 14 of 24 ENG.001.A #### Effect of sample matrix Citrate, heparin and EDTA plasmas were compared to respective serum samples from the same 10 individuals. However, we observed low correlation among serum and EDTA plasma and among serum and heparin plasma ENPP1 protein values. Results are shown below: | Volunteer | Serum | Plasma (ng/ml) | | | |---|---------|----------------|---------|---------| | No. | (ng/ml) | EDTA | Citrate | Heparin | | 1 | 16.27 | 11.87 | 13.21 | 12.99 | | 2 | 19.20 | 17.25 | 18.51 | 19.96 | | 3 | 17.97 | 15.48 | 14.99 | 17.04 | | 4 | 19.30 | 17.12 | 17.88 | 18.82 | | 5 | 14.16 | 13.30 | 13.17 | 15.40 | | 6 | 18.03 | 16.87 | 16.93 | 18.45 | | 7 | 16.17 | 15.57 | 14.55 | 16.91 | | 8 | 15.18 | 14.09 | 13.68 | 15.27 | | 9 | 15.83 | 14.07 | 13.72 | 14.68 | | 10 | 16.13 | 13.94 | 14.35 | 16.53 | | Mean (ng/ml) | 16.82 | 14.96 | 15.10 | 16.61 | | Mean Plasma/Serum (%) | - | 89 | 90 | 99 | | Coefficient of determination R ² | - | 0.65 | 0.84 | 0.61 | Figure 3: ENPP1 levels measured using Human ENPP1 ELISA from 10 individuals using serum, EDTA, citrate and heparin plasma, respectively. Page 15 of 24 ENG.001.A #### 14. DEFINITION OF THE STANDARD The recombinant protein is used as the standard in this assay. The recombinant ENPP1, produced in HEK 293 cells, is a 96.5 kDa protein containing 840 amino acids. #### 15. PRELIMINARY POPULATION AND CLINICAL DATA The following results were obtained when serum samples from 160 unselected donors (88 men + 72 women) 21 - 65 years old were assayed with the Biovendor Human ENPP1 ELISA in our laboratory. Each laboratory should establish its own normal and pathological references ranges for ENPP1 levels with the assay. | Sex | Age | n | Mean | Median | SD | Min | Max | |-------------|-------|----|-------|---------|-------|-------|-------| | Sex (years) | | | ENI | PP1 (ng | g/ml) | | | | | 21-29 | 18 | 16.78 | 17.10 | 2.65 | 12.00 | 21.50 | | Men | 30-39 | 28 | 17.23 | 16.75 | 3.34 | 11.70 | 26.00 | | IVIEII | 40-49 | 32 | 18.04 | 17.80 | 2.80 | 13.60 | 27.70 | | | 50-65 | 17 | 15.72 | 15.30 | 1.97 | 12.70 | 18.50 | | | 22-29 | 13 | 15.60 | 15.30 | 3.01 | 11.80 | 20.40 | | Women | 30-39 | 28 | 17.15 | 16.75 | 5.03 | 10.10 | 25.30 | | VVOITIETT | 40-49 | 23 | 16.67 | 16.30 | 2.45 | 11.40 | 23.90 | | | 50-61 | 9 | 16.53 | 16.90 | 1.60 | 13.80 | 18.60 | Page 16 of 24 ENG.001.A Figure 4: Human ENPP1 concentration plotted against donor age and sex. ## 16. METHOD COMPARISON The BioVendor Human ENPP1 ELISA was not compared to the other commercial immunoassays. Page 17 of 24 ENG.001.A #### 17. TROUBLESHOOTING AND FAQS #### Weak signal in all wells Possible explanations: - Omission of a reagent or a step - Improper preparation or storage of a reagent - Assay performed before reagents were allowed to come to room temperature - Improper wavelength when reading absorbance #### High signal and background in all wells Possible explanations: - Improper or inadequate washing - Overdeveloping; incubation time with Substrate Solution should be decreased before addition of Stop Solution - Incubation temperature over 30°C #### High coefficient of variation (CV) Possible explanation: - Improper or inadequate washing - Improper mixing Standards and samples Page 18 of 24 ENG.001.A #### References to ENPP1: - 1. Bowman MAH, McNally EM: Genetic Pathways of Vascular Calcification: Trends cardiovasc Med. **22**:(4) 93-98 (2012) - 2. Kato K, Nishimasu H, Okudaira S, Mihara E, Ishitani R, Takagi J, Aoki J, Nureki O: Crystal structure of ENPP1, an extracellular glycoprotein involved in bone mineralization and insulin signaling.PNAS **109**(42):16876-16881.(2012) - 3. Sortica DA, Crispim D, Zaffari GP, Friedman R, Canani H: The role of ecto/nucleotide pyrophosphatase/phosphodiesterase 1 in diabetic nephropathy. Arq Bras Endocrinol Metab **55**(9): 677-85.(2011) - 4. Goldfine ID, Maddux BA, Youngren JF, Reaven G, Accili D, Trischitta V, Vigneri R, Frittitta L. The Role of Membrane Glycoprotein Plasma Cell Antigen 1/Ectonucleotide Pyrophosphatase Phosphodiesterase 1 in the Pathogenesis of insulin Resistance and Related Abnormalities. Endocrine Rewievs 29(1): 62-75 (2008) - 5. Stefan C, Jansen S, Bollen M. NPP-type ectophosphodiesterases: unity in diversity. Trends Biochem sci **30**: 542-550 (2005) - 6. Goding JW, Grobben B, Slegers H: Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochim Biophys Acta **1638**:1-19 (2003) - 7. Rutsch F, Vaingankar S, Johnson K, Goldfine I, Maddux B, Schauerte p, Kalhoff H, Sano K, Boiswert WA, Superti-Furga A, Terkeltaub B: PC-1 nucleoside triphosphate pyrophosphohydrolase deficiency in idiopathic infantile arterial calcification. Am J Pathol **158**: 543-554. (2001) - 8. Bollen M, Gijsbers R, Ceulemans H, Stalmans W, Stefan C: Nucleotide pyrophosphatases/phosphodiesterases on the move. Crit Rev Biochem Mol Biol.35(6):393-432 (2000) - 9. Johnson K, Moffa A, Chen Y, Pritzker K, Goding J, Terkeltaub R: Matrix vesicle plasma cell membrane glycoprotein-1 regulates mineralization by murine osteoblastic MC3T3 cells. J Bone Miner Res **14**: 883-892. (1999) - 10. Goding JW, Terkeltaub R, Maurice M, Deterre P, Sali A, Belli SI. Ecto/phosphodiesterase/pyrophosphatase of lymphocytes and non-lymphoid cells: structure and function of the PC-1 family. Immunol Rev **161**:11-26 (1998) - 11. Funakoshi I, Kato H, Horie K, Yano T, Hori Y, Kobayashi H, Inoue T, Suzuki H, Fukui S, Tsukahara M: Molecular cloning of cDNAs for human fibroblast nucleotide pyrophosphatase. Arch Biochem Biophys 295: 180-187 (1992) For more references on this product see our WebPages at www.biovendor.com Page 19 of 24 ENG.001.A ## 19. EXPLANATION OF SYMBOLS | REF | Catalogue number | |--------------|---------------------------------------| | Cont. | Content | | LOT | Lot number | | <u>\(\)</u> | See instructions for use | | | Biological hazard | | | Expiry date | | 2 °C 8 °C | Storage conditions | | 5
PP | Identification of packaging materials | Page 20 of 24 ENG.001.A ## **Assay Procedure Summary** Page 21 of 24 ENG.001.A Page 22 of 24 ENG.001.A Page 23 of 24 ENG.001.A | HEADQUARTERS:
BioVendor - Laboratorní
medicína a.s. | Karasek 1767/1 | 621 00 Brno
CZECH REPUBLIC | Phone:
Fax: | +420-549-124-185
+420-549-211-460 | E-mail:
Web: | info@biovendor.com
sales@biovendor.com
www.biovendor.com | |---|---|---|----------------|---|-----------------|--| | EUROPEAN UNION:
BioVendor GmbH | Im Neuenheimer Feld 583 | D-69120 Heidelberg
GERMANY | | +49-6221-433-9100
+49-6221-433-9111 | E-mail: | infoEU@biovendor.com | | USA, CANADA AND MEXICO:
BioVendor LLC | 128 Bingham Rd.
Suite 1300 | Asheville, NC 28806
USA | Phone:
Fax: | +1-828-575-9250
+1-800-404-7807
+1-828-575-9251 | E-mail: | infoUSA@biovendor.com | | CHINA - Hong Kong Office:
BioVendor Laboratories Ltd | Room 4008
Hong Kong Plaza, No.188 | Connaught Road West
Hong Kong, CHINA | | +852-2803-0523
+852-2803-0525 | E-mail: | infoHK@biovendor.com | | CHINA – Mainland Office:
BioVendor Laboratories Ltd | Room 2917, 29/F
R & F Ying Feng Plaza, No.2
Huaqiang road | Pearl River New Town
Guang Zhou, CHINA | | +86-20-38065519
+86-20-38065529 | E-mail: | infoCN@biovendor.com | Page 24 of 24 ENG.001.A