Fina Fina Biosolutions LLC

Introduction

 CRM_{197} , a single amino acid mutant of diphtheria toxin, is a commonly used carrier protein in licensed conjugate vaccines. Until recently, this protein has been commercially available only as expressed in Corynebacterium diphtheriae ("C7") and Pseudomonas fluorescens (Pfenex Reagent Proteins), as secreted and periplasmic proteins, respectively. A new CRM₁₉₇, EcoCRMTM (Fina Biosolutions), is expressed in E. coli as a soluble, properly-folded intracellular protein and purified at high yields. To determine comparability of EcoCRMTM with the other two commercial sources of CRM_{197} , an assessment using a wide variety of physicochemical assays was performed. A comprehensive analysis demonstrates that recombinant CRM₁₉₇'s expressed in two heterologous systems (E. coli and Pseudomonas fluorescens) are overall highly similar in terms of primary sequence/post translational modifications, higher-order structural integrity, apparent solubility, and physical stability profile (vs. pH and temperature) with CRM₁₉₇ from Corynebacterium.

The physicochemical assays established in this work to monitor the key structural attributes of CRM_{197} should also prove useful as complementary characterization methods (to routine quality control assays) to support future process and formulation development of lower $cost CRM_{197}$ carrier proteins for use in conjugate vaccines.

These results demonstrate that EcoCRMTM has the potential to be a low-cost source for CRM₁₉₇ carrier protein for conjugate vaccines.

This work will be published in Hickey et al. J Pharm Sci, 2018 (https://doi.org/10.1016/j.xphs.2018.03.002).

Objective

 CRM_{197} , a genetically detoxified diphtheria toxin, is a widely used conjugate vaccine carrier protein. Unlike toxoided protein, CRM_{197} has its full complement of lysines available for conjugation. Manufacturing conjugate vaccines is a complex process and multiple factors can affect the product e.g., polysaccharide composition, linker length, conjugation chemistry and the carrier protein structure. Ensuring the carrier protein is properly manufactured and well-characterized is critical to the consistent manufacture of conjugate vaccines.

 CRM_{197} is translated as a 58 kDa polypeptide in that is commonly expressed in C. diphtheria, usually at low yield. As highly multivalent vaccines, such as ones for S. pneumoniae, use large amounts of carrier protein, the cost of CRM_{197} can make up a significant fraction of the overall cost of goods. This is an important consideration in efforts to make these vaccines affordable for low income countries.

In this study, we evaluated commercially available recombinant CRM_{197} molecules from three expression systems, the traditional C. diptheriae ("C7 CRM") from List Labs), and two heterologous systems, E. coli (EcoCRMTM from Fina Biosolutions) and P. fluorescens (from Pfenex *CRM from Reagent Proteins*). They were analytically characterized and compared in terms of structural integrity, solubility and conformational stability profiles using a wide variety of biochemical, biophysical assays.

Analytical Comparability Assessments of Commercially Available Recombinant CRM₁₉₇ Proteins from **Different Manufacturers and Expression Systems**

John M. Hickey¹, Vishal M. Toprani¹, Kawaljit Kaur¹, Natalia Oganesyan², Andrew Lees², Robert Sitrin³, Sangeeta B. Joshi¹, and David B. Volkin¹

¹ Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, KS 66047 USA ² Fina Biosolutions LLC, Rockville MD 20850 USA ³ PATH, Washington, DC 20001 USA

(C) Representative LC peptide mapping chromatograms of non-reduced trypsin-digested CRM₁₉₇ samples. The red and blue arrows indicate the two peaks containing Cys⁴⁶¹-Cys²⁷³ and Cys¹⁸⁶-Cys²⁰⁰ bonded peptides, respectively. The black and green arrows indicates an N-terminal peptide with or without a Met residue, respectively.

Charge Heterogeneity Analysis

Size Analysis

Figure 3. The size and distribution of monomer, aggregate and fragment species in the three CRM_{197} samples were compared through (A) sedimentation velocity analytical ultracentrifugation (SV-AUC), and (B) size exclusion chromatography (SEC). The elution times and molecular weight values of gel filtration standard proteins are shown above the SE chromatograms.

Pfenex CRM, and C7 CRM in PBS buffer at six different pH s (5.8, 6.3, 6.8, 7.2, 7.6, and 8.0) were measured as a function of temperature (10-90°C). A radar chart² for each CRM₁₉₇ protein was generated from the resulting data. Six distinct biophysical states of each protein (regions I-VI) were observed as a function of pH and temperature The contribution of each biophysical technique towards the different structural states of each CRM_{197} are indicated on each vertex in the key.

SLS

Macromolecule and Vaccine Stabilization Center

Summary of Key Structural Attributes

Analytical Method	Measurement	EcoCRM TM	Pfenex CRM	C7 CRM
Mass Spectrometry	Intact Protein Mass (Da)	58410 ± 1 58541 ± 1*	58410 ± 1	58410 ± 1 58734 ± 1* 59058 ± 1*
	*Post-Translational Modification	N-terminal Met (+131 Da)	-	Glycation (+324, +648 Da)
Capillary Isoelectric Focusing	Main Peak (pI 5.6-5.7) (%) Acidic species (pI 5.5-5.6) (%) Basic species (pI 5 7-5 8) (%)	92 ± 0 7 \pm 0 1 \pm 0	99 ± 0 0 ± 0 1 ± 0	79 ± 1 21 ± 1 0 ± 0
Anion Exchange Chromatography	Main Peak (%) Acidic Species (%)	92 ± 0 8 ± 0	100 ± 0 0 ± 0	75 ± 1 024 ± 1
Circular Dichroism	Spectral minima at 10°C (nm) Tm (°C)	208 & 222 58.2 ± 1.0	208 & 222 57.9 ± 0.3	208 & 222 NA*
Intrinsic Trp Fluorescence	Peak emission maximum at 10°C (nm) Tm (°C)	328 ± 1 41.2 ± 0.3	329 ± 1 42.3 ± 0.3	331 ± 1 43.2 ± 0.2
Static Light Scattering	Tonset (°C)	43.0 ± 0.6	43.6 ± 0.3	45.2 ± 0.7
Extrinsic ANS Fluorescence	Peak emission intensity (10 ⁵ counts/s) Tm (°C)	441 ± 7 40.8 ± 0.5	437 ± 8 41.4 ± 0.5	411 ± 16 42.5 ± 0.2
Differential Scanning Calorimetry	Tonset (°C) Tm1 (°C) Tm2 (°C)	32.7 ± 0.3 42.0 ± 0.0 51.3 ± 0.2	34.8 ± 0.2 42.8 ± 0.0 51.1 ± 0.2	35.2 ± 0.6 44.0 ± 0.1 51.7 ± 0.1
Size Exclusion Chromatography	Monomer (%) Aggregates (%) Fragment (%)	98 ± 0 1 ± 0 2 ± 0	100 ± 0 0 ± 0 0 ± 0	73 ± 1 13 ± 1 14 ± 0
Sedimentation Velocity Analytical Ultracentrifugation	Monomer (%) Aggregates (%) Fragment (%)	99 ± 0 1 ± 0 0 ± 0	100 ± 0 0 ± 0 0 ± 0	68 ± 1 11 ± 1 21 ± 0
Resonant Mass Measurement (0.2-2 um)	Total particles after dilution (number/mL x 10 ⁵)	1.7 ± 0.4	1.6 ± 1.2	5.1 ± 0.4
Micro-Flow Imaging (2-100 um)	Total particles after dilution (number/mL)	85 ± 56	84 ± 9	453 ± 163

Table 1. Summary of the key structural attributes (physicochemical and *in vitro* antigenicity) of EcoCRMTM, Pfenex CRM, and C7 CRM. * Broad and slightly biphasic nature of the transition in C7 CRM prevented accurate calculation. The experimental data is presented in full in Hickey et al¹

Conclusions

This study provides baseline data sets of the key structural attributes of CRM197 to enable future comparisons of the physicochemical properties of this carrier protein.

The data provides a basis for the acceptance of CRM₁₉₇ produced in low cost expression systems, such as Fina Biosolution's EcoCRMTM.

References

1. Hickey, J.M., Toprani, V.M., Kaur, K., Mishra, R.P.N., Goel, A., Oganesyan, N., Lees, A., Sitrin, B., Joshi, S.B. & Volkin, D.B. (2018). Analytical Comparability Assessments of Five Recombinant CRM₁₉₇ Proteins from Different Manufacturers and Expression Systems. J. Pharm. Sci. (Accepted for publication, https://doi.org/10.1016/j.xphs.2018.03.002)

2. Kim JH, Iyer V, Joshi SB, Volkin DB, Middaugh CR (2012). Improved data visualization techniques for analyzing macromolecule structural changes. Protein Sci 21(10):1540-1553.

Acknowledgement

This work was supported by PATH. The authors would like to thank Dr. Ronald Toth at the University of Kansas for performing the SV-AUC analysis.

For more information on EcoCRMTM from Fina Biosolutions, please contact info@FinaBio.com or visit www.Finabio.com